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Collapse of void arrays under stress wave loading
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The interaction of an array of voids collapsing after passage of a stress wave
is studied as a model problem relevant to porous materials, for example, to energy
localization leading to hotspot formation in energetic materials. Dynamic experiments
are designed to illuminate the hydrodynamic processes of collapsing void interactions
for eventual input into device-scale initiation models. We examine a stress wave
loading representative of accidental mechanical insult, for which the wave passage
length scale is comparable with the void and inter-void length scales. A single
void, two-void linear array, and a four-void staggered array are studied. Diagnostic
techniques include high-speed imaging of cylindrical void collapse and the first
particle image velocimetry measurements in the surrounding material. Voids exhibit an
asymmetrical collapse process, with the formation of a high-speed internal jet. Volume
and diameter versus time data for single void collapse under stress wave loading are
compared with literature results for single voids under shock-wave loading. The
internal volume history does not fall on a straight line and is in agreement with
simulations, but in contrast to existing linear experimental data fits. The velocity field
induced in the surrounding material is measured to quantify a region of influence
at selected stages of single void collapse. In the case of multiple voids, the stress
wave diffracts in response to the presence of the upstream void, affecting the loading
condition on the downstream voids. Both collapse-inhibiting (shielding) and collapse-
triggering effects are observed.

1. Introduction

The formation of regions of localized energy release, or hotspots, is critical to
detonation initiation in energetic materials. Hotspots can result in local ignition
kernels at conditions in which bulk chemical energy release is insufficient for initiation.
Hotspots may be formed due to the interaction of the loading wave with micro-scale
and molecular-scale material heterogeneities through processes such as debonding,
micro-cracking and shear-banding (Bowden & Yoffe 1952). One mechanism by which
hotspots can be created is the collapse of voids. If the chemical and mechanical
energy release can couple and overcome dissipation, a detonation is initiated (Tarver,
Chidester & Nichols 1996). Understanding the dominant mechanisms of hotspot
formation is critical for determining ignition performance, as well as establishing safe
handling procedures.

Predicting hotspot criticality, ignition spread and detonation initiation is an
extremely challenging problem, involving thermo-mechanical fluid—structure coupling
and complex chemical kinetics. In addition, the relevant processes span an extremely
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broad range of length and time scales. At the device scale, the goal is usually to predict
whether a detonation is initiated and the run to detonation distance; however, hotspot
formation occurs at the substantially smaller scales associated with the material
structure. A considerable challenge must therefore be addressed: How can predictions
performed on the device scale incorporate the critical impact of phenomena at
unresolved scales? Applications such as shock desensitization (Campbell & Travis
1985) and the formation of dead zones (Ferm et al. 2001) are particularly relevant
as they are not easily treated by ignition and growth (Tarver, Hallquist & Erickson
1985) or Johnson-Tang-Forest (JTF) models (Johnson, Tang & Forest 1985).

Scale-bridging codes are intended to span between device and material structure
length scales (Menikoff 2001; Baer 2002; Nichols & Tarver 2002). In the statistical
modelling approach, identical and individual hotspots are presumed to occur with
the same statistical distribution as the voids in the unreacted material. However,
the interaction of loading wave with the upstream voids has been shown to have
an impact on the collapse of downstream voids (Dear & Field 1988; Bourne &
Field 1990). The overarching goal of this work is to examine the interactive
collapse of a void array to contribute to model development for scale-bridging
codes.

Numerous researchers (e.g. Mader 1965; Carroll & Holt 1972; Khasainov et al.
1981; Maiden & Nutt 1986; Kang, Butler & Baer 1992; Bourne & Field 1999;
Menikoff 2003b; Tran & Udaykumar 2006) have examined energy localization
mechanisms during the collapse of a single void, identifying several relevant
mechanisms: shock focusing, adiabatic gas compression, jetting, hydrodynamic and
viscoplastic work. A Reynolds number Re based on the void size can be defined as

Re =6, /pps/ 1L, (L.1)

where §, is the critical void size, p, is the loading wave strength, and p and u are the
density and viscosity, respectively, in the surrounding media (Khasainov et al. 1981).
For small Reynolds numbers corresponding to small void diameters, the collapse is
in a viscous regime. For high Reynolds numbers and larger voids, the collapse is
in the hydrodynamic regime (Khasainov et al. 1981; Tran & Udaykumar 2006). In
this study, we focus on the hydrodynamic processes that occur as an array of voids
interact during the collapse. We note that the experiments are designed to examine a
model problem in a gelatinous material and do not reproduce the material properties
of explosives.

There is an extensive literature examining the collapse of voids or bubbles under
shock loading which, for energetic materials, is applicable in performance (high-
impact velocity) applications. In this work, we instead examine a slower loading wave
with a ramped profile, typical of an accidental (low-impact velocity) scenario in which
a stress wave is induced in the device casing. The length scales of the loading wave
profile are comparable with the void and inter-void length scales, potentially resulting
in a strongly coupled interaction. Note that the relative importance of void collapse in
hotspot formation depends on the type of explosive. In crystalline primary explosives,
lower impact loading can increase the relative importance of mechanisms such as
crystalline fracture and shear-banding. In secondary explosives such as PETN, void
collapse plays a more substantial role. The inclusion of bubbles in liquid, gelatinous
or plastic explosives render it sensitive to the ‘gentlest’” impact (Bowden & Yoffe
1952). Stress wave loading of voids also occurs in numerous other applications
from hydraulic to biomedical. In shock-wave lithotripsy, for example, the interaction
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between shearing and cavitation can cause substantial damage to surrounding tissue
material (Bailey et al. 2003).

We carry out dynamic experiments in a model set-up similar to that pioneered
by Dear et al. (1988) for a different loading condition. Gas-filled voids in a thin sheet
of gelatinous material are sandwiched between two optically transparent plates and
subjected to a planar stress wave induced by a gas gun and striker plate. High-speed
images are used to track the precursor wave and void interfaces as a function of time.
In addition, full velocity field data during passage of the loading wave and collapse
of the void array are obtained via particle image velocimetry (PIV) measurements.

The paper is organized as follows. In §2, we summarize relevant literature studies
of shock-induced void collapse, for comparison with the current stress wave loading
results. The experimental set-up and diagnostics are described in § 3, including the
characterization of the loading wave. Results including high-speed movies tracking
the void array collapse and velocity field data in the surrounding media follow. We
first discuss a single void in §4, examining the key processes occurring during collapse
and quantify the region of influence. A longitudinal two-void array (§5) and a four-
void staggered array (§6) are then examined, with a focus on the dynamics of void
interaction with each other and with the loading wave during collapse. In §7, results
of this study under conditions of stress wave loading are compared and contrasted
with results for bubble collapse under shock-wave loading.

2. Previous shock-induced void collapse research

In addition to their critical role in the condensed phase detonation initiation,
shock—cavity interactions occur in a wide range of applications. Extensive work, both
experimental and computational, has been performed for the collapse of a single void
in reactive and non-reactive media under shock loading. Ding & Gracewski (1996)
performed a two-dimensional computational study of a gas cavity exposed to shocks
of various strengths. A weak shock was defined as one that resulted in symmetric
cavity collapse, which was observed to occur if the pressure ratio across the shock
wave was less than 300. A strong shock was defined as one that resulted in asymmetric
cavity collapse, which was observed to occur if the pressure ratio was greater than
5000. Intermediate cases were not investigated in this study. In the case of a ‘light’
bubble (with the acoustic impedance of the material inside the cavity less than that
of the surrounding material), a reflected expansion wave is generated upon the shock
interaction with the void interface. The expansion wave was observed to induce a
particle velocity nearly twice that of the shock-induced velocity. For the strong shock
case, the upstream interface rapidly coalesces into a jet, which impinges upon the
distal interface, asymmetrically collapsing the cavity.

The formation of an internal, high-speed jet was experimentally observed by Dear
et al. (1988) and Bourne & Field (1992), in the study of a 0.26 GPa shock interaction
with 3—12mm diameter cylindrical voids in a 12 % gelatine—water mixture. The jet
tip was observed to propagate at roughly twice the post-shock particle velocity, which
is in agreement with the acoustic approximation. Additionally, the authors estimate
that the jet velocity could increase another factor of 1.5 due to nonlinear effects. A
summary of normalized volume versus time data was presented and compared with
existing results from the literature. Bourne & Field (1992) found a linear curve fit
to these data. Strong shocks with velocities corresponding to pressure ratios up to
3.49 GPa were also investigated in a related study (Bourne & Field 1990). In this case,
the internal jet was observed to propagate through the void ahead of the incident
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shock with a velocity of 7.5 times that of the particle velocity in the medium. The
impact of the jet on the downstream wall created a shock wave that overtook the
incident loading wave.

The internal, high-speed jet that may be formed during the shock—bubble interaction
and the consequent ‘water-hammer’ impact on the material downstream of the
void has been examined numerically and experimentally by numerous researchers.
For example, in an inert material with constitutive properties of HMX, Menikoff
(2003b) observed that under strong shock loading, the internal jet propagated
at velocities comparable with the shock velocity, and its impact on the distal
interface generated a Mach reflection in the lead shock. Ball et al. (2000) simulated
a cylindrical, 6 mm diameter, air-filled void in water for comparison with the
experiments of Bourne & Field (1992). When exposed to a 1.9 GPa shock, the
void was found to collapse asymmetrically and form a high-speed jet. The impact
of this jet on the distal wall created a 4.7 GPa blast wave that propagated into the
downstream media. Bourne & Milne (2003) discuss the importance of the jets in the
ignition process. Experimental and numerical results indicate that a reaction zone
is always formed ahead of the lead shock. When comparing simulations, they saw
that in the reactive case, the shock is accelerated in comparison with the inert case,
illustrating the importance of coupling between the fluid dynamics and the chemical
energy release.

Bourne & Field (1991) also examined the initiation of reaction through void collapse
by sensitizing a 12 % gelatine—water mixture with an ammonium nitrate/sodium
nitrate emulsion. The high-speed Schlieren revealed that during the collapse, a series
of shocks were reflected internally inside the void, resulting in gas heating. During the
final stages of the collapse, luminescence was observed indicating high temperatures
inside the cavity. By measuring the volume of the gas inside the void, Dear et al.
(1988) estimate that for an adiabatic compression temperatures would reach 750 K,
at a minimum. This result is also consistent with gas luminescence due to both
free-radical creation and radiative recombination. Spectroscopic measurements made
by Tarver et al. (1996) confirmed this; temperatures in the range of 600-1600 K were
obtained. These results illustrate that ignition temperatures can be reached at the
final stages of void collapse.

Ball et al. (2000) and Turangan et al. (2008) report the normalized volume versus
time behaviour observed in their simulations of cylindrical cavity collapse. Their data
exhibit a non-constant rate of collapse and deviates from the linear experimental
data fit of Bourne & Field (1992). Johnsen & Colonius (2009) simulated the collapse
of a spherical air bubble in water, examining shock-induced collapse and Rayleigh
collapse in a free field and near a rigid boundary. A range of pressure ratios were
examined. Normalized volume versus time data show a collapse history that does not
fall on a straight line. We compare our experimental results for the baseline case of
a single void collapse with these experimental and numerical studies, to quantify the
effects of stress wave versus shock-wave loading.

In addition to their work on isolated cavities, Dear & Field (1988) have examined
the collapse of an array of voids under shock loading. The study considered a one by
three longitudinal array of 3 mm voids at 5mm spacing. The downstream voids were
observed to experience only a slight compression due to shock passage. The collapse
of the second cavity is a result of the ‘rebound shock’ generated by the upstream
void. Similar observations were made by Dear et al. (1988), who concluded that for
correct conditions of shock strength, cavity diameter and cavity spacing, a chain
reaction of collapses is attainable. Vertical three by one arrays were also investigated.
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Side void jets were found to diverge from their centrelines towards the central void.
Lastly, the study involved the examination of a three by three rectangular array of
cavities. The outside cavities produced slightly divergent jets as in the vertical array
case. In addition, the first column of cavities shielded subsequent columns, as in the
longitudinal case. The collapse of downstream columns was observed to be a result
of the rebound shock from the upstream column.

In the above studies, the loading condition is a shock, such as would be induced
by high-velocity projectile impact. In this study, we instead examine a stress wave
loading condition that, in an energetic material, might be induced by accidental
mechanical insult. Stress wave loading is also of interest in other applications, for
example in biomedicine. We choose the length scales of the stress loading wave
profile to be comparable with the void and inter-void length scales, and examine the
interaction of the loading wave and dynamics of cavity collapse. The final pressure
ratio across the loading wave in this study is intermediate to the weak and strong
cases identified by Ding & Gracewski (1996), and asymmetric collapse is observed for
an isolated void. A single void, two-void linear array, a four-void staggered array are
studied. Diagnostic techniques include high-speed imaging of void collapse and PIV
measurements in the surrounding media. In the case of a single void, we compare
and contrast our results with those of the existing shock-induced void collapse
literature.

3. Experimental set-up

The gas gun used in this experiment has a barrel length of 2.1 m and a honed 25 mm
inner diameter. A projectile, made from heat treated and hardened maraging steel,
is accelerated from a reservoir with an internal piston pressurized with compressed
air. Near the end of the gun barrel, two sets of infrared emitters and detectors are
positioned to measure the projectile velocity. In these experiments, the reservoir is
pressurized to 15 psi and the resulting projectile velocity is 27.0 +0.3 ms™!.

Void collapse in energetic materials involves complex interaction between
thermochemical, mechanical, and hydrodynamic processes. In this study, we examine
hydrodynamic mechanisms in a model problem. The test sample is made by
sandwiching a thin sheet of gelatinous material between two optically accessible
plates. A mixture of agarose (GenePure LE Agarose, supplied by ISC BioExpress)
and glycerol gradient buffer (GGB) is set as a thin (1.6 mm) gelatinous sheet into
which cylindrical, air-filled voids can be easily introduced. The gel is manufactured
by dissolving 5 % agarose by volume in GGB at 295 K. The mixture is heated until
the boiling point is reached, cooled to 328 K and poured into a mold containing
3mm cylindrical tubing used to form the voids. This ‘guide plate’ produces highly
repeatable void geometries with distinct interfaces. Different guide plates are used to
create different array geometries. After the gel has set, the guide plate is removed
and replaced by a solid side plate. A comparable gel material (polydimethylsiloxane,
PDMS) was used in studies of dynamic witness plates for exploding bridge wire
detonators (Murphy et al. 2005; Murphy & Adrian 2007). Similar experimental
techniques were used as in the present study, with the transparent gel material allowing
optical access for Schlieren visualization of the blast wave and PIV measurements
in the post-shock fluid. The mold, shown in figure 1, is made from two 100 mm X
70mm x 9.5mm (length x width x height) pieces of polymethyl methacrylate
(PMMA) serving as windows and two spacers of dimension 100mm x 20mm X
1.6 mm. The sample thickness (1.6 mm) is chosen to minimize three-dimensional effects.
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FiGURE 1. Sketch of mold used to create samples of gelatinous material with voids. The guide
plate is replaced after the gel has set. The projectile impacts the striker plate that transmits
the loading waves to the sample.
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FIGURE 2. Schematic of gas gun and test section showing the projectile, projectile velocity
measurement and diagnostic trigger sensors, and sample location.

The sample state in the mold may be approximated as plane strain. An aluminium
striker plate is used to create the loading condition of interest. The projectile impacts
the striker plate, introducing a stress wave that produces the loading condition in the
gel material. The striker has a total length of 30 mm and protrudes 15 mm into the
mold, so that the usable gel test sample is 85mm x 30mm x 1.6 mm. The spacing
between the striker plate and the centre of the first (upstream) void is 5 mm. The four
pieces are sealed with Dow Corning 732 RTV Multipurpose Sealant and clamped
together.

The material properties of agarose-GGB gel were obtained from a separate
series of experiments. In order to determine the Young’s modulus, a quasi-static
compression test using an MTS Alliance RT/30 load frame was conducted. The
test was performed on seven samples, yielding an average Young’s modulus value of
38.2+4.0 kPa. This matched well with results obtained for gelatine by Kodama &
Tomita (2000). The sound speed of the Agarose-GGB gel was obtained using a
JSR Ultrasonics PR35 Ultrasonic Pulser/Receiver. This resulted in an average sound
speed of 1500+ 10ms~'. As we consider a model problem, the material properties of
the gelatine differ significantly from a solid explosive.

Inside the test section, the sample is placed without restraint immediately
downstream of the exit of the barrel. The experimental diagnostics trigger sensor
consists of an infrared emitter and sensor pair and is mounted 5 mm downstream of
the barrel exit. A schematic of the gas gun and test section is shown in figure 2.
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L1: Solid state laser SF: Spatial filter pinhole

F1: Focussing lens, /=300 mm C1: 20 mm collimating lens, f= 150 mm
F2: Focussing lens, /=300 mm TS: Test sample

AOM: Acousto-optic modulator CAM: High-speed rotating mirror camera
A: Aperture

FIGURE 3. Schematic of the high-speed imaging set-up.

A Utah Image Systems’ high-speed, rotating mirror framing camera is used to
acquire time-resolved images of the void collapse process. A 2 Watt 532 nm solid state
continuous wave laser provided illumination for the experiment. The 200 ns exposure
time is controlled by an acousto-optic modulator. The light leaving the acousto-optic
modulator passes through a 10 um pinhole, creating a point source, which is then
collimated (f = 150 mm) to a 20 mm field of view. The camera produces a total of 80
images on two separate film tracks inside the circumference of the camera drum. A
schematic of the optical configuration is shown in figure 3. The interframe time can
be varied and is set to either 1.5 pus or 2.0 us depending upon the void configuration.
Error bars on high-speed image data are + 0.23mm in position and +0.75pus and
+1.0ps in time for the 1.5 pus and 2.0 us interframe times, respectively. These images
not only serve to track the void interfaces with time but can provide void area (and
subsequently volume assuming a constant sample thickness of 1.6 mm) as a function
of time during the collapse. A MATLAB code, including edge-detection algorithms,
has been implemented to track the boundary of the void and compute the enclosed
area for each film frame.

PIV measurements are conducted using a two-colour, single-frame technique.
Hollow glass spheres, approximately 20 um in diameter, are introduced into the
gel before it is poured into the mold. The PIV set-up (figure 4) consists of a pair of
fast response, high-energy LEDs by Innovative Scientific Solutions Inc. (ISSI). After
receiving a triggering signal from the infrared sensors, a delay generator triggers
the first LED, which emits a 500 ns red (625 nm) light pulse. After a 3 us delay, a
second LED emits a 500 ns blue (625 nm) light pulse. Light from the two LEDs
passes through a prism and illuminates a 30 mm field of view in the gel. A Nikon
D50 camera is triggered manually. The raw data are analysed using dPIV 2.1 (ISSI)
software. The resolution of the velocity measurements is 2ms™'.

3.1. Characterizing the stress wave loading condition

In performance applications, a strong shock wave is used to initiate detonation in
energetic materials. There has been a significant amount of research examining the
related problem of shock-induced collapse of bubbles. The type of collapse can be
identified as symmetric or asymmetric, parameterized by the pressure ratio across the
shock wave. For the larger bubbles or voids that are relevant to the hydrodynamic
collapse regime, the shock passage time is typically much less than the void collapse
time (Bourne & Field 1992).
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FIGURE 4. Schematic of the two-colour, single-frame PIV experiment.
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FIGURE 5. (a) Wave velocity vs. piston velocity in HMX from Jaramillo et al. (2007). The
present experiments examine a lower impact velocity that produces an elastic—plastic wave in
the striker plate. (b) Representation of an elastic—plastic wave.

In this work, we instead consider a lower-velocity loading condition, such as one that
might result from accidental impact. For example, Jaramillo, Sewell & Strachan (2007,
see figure 5a), Menikoff (2003a) and Dick et al. (2004) report on the development
of the elastic—plastic wave propagation in HMX as a function of impact velocity. At
low piston speeds, only a precursor wave is present. At intermediate piston speeds,
an elastic—plastic stress wave propagates through the material. Finally, at the highest
piston speeds, a shock wave is formed. We examine a loading condition that is in
the intermediate, stress wave regime. In this experiment, a projectile with velocity of
27ms~! impacts a striker plate and produces an elastic—plastic wave in the plate. The
resulting loading condition in the gel (figure 5b) consists of a pressure pulse generated
by the incidence of the precursor elastic wave, followed by a ramped velocity profile
generated by the incidence of the plastic wave. Through the ramped wave, the particle
velocity in the gel sample increases to match the projectile velocity. The length scales
of the ramped velocity wave profile are comparable to the void diameter and inter-
void spacing, potentially resulting in a dynamic interaction between the propagating
loading wave and the collapsing voids.
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FIGURE 6. High-speed image x—t data of pressure pulse resulting from the elastic wave
incident on the striker—sample interface.
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FIGURE 7. (a) Velocity profiles through the Agarose-GGB mixture measured at several
cross-sections in a single PIV image and (b) evolution of centreline velocity as the stress
wave propagates through the field of view. The striker plate is located at x = O mm. Flow is
from left to right.

We first quantify the loading condition in the gel material without voids. The
pressure pulse resulting from the elastic precursor wave is tracked using high-speed
images. These data are shown on an x—¢ diagram in figure 6. The pulse is measured
to propagate at 1580+ 38 ms~!. From the PIV measurements, we observe that the
precursor wave induces no detectable velocity field (figure 7).

The incidence of the plastic wave on the striker—gel material interface results in
a wave with a ramped linear velocity profile propagating through the gel material.
The ramped velocity profile contrasts the discontinuous velocity profile that results
from shock-wave loading. To characterize the loading condition, we measure velocity
profiles at several horizontal cross-sections in the gel from a single PIV image
(figure 7a). These data are obtained 17 ps after projectile impact on the striker,



408 A. B. Swantek and J. M. Austin

(a) 0 us (b) 4.5 ps (c) 18 ps (d)25.5 ps (e)33 us
FiGure 8. High-speed images of a single void collapse. Images are obtained using a laser light
source through a gelantinous material; some laser diffraction could not be eliminated. Initial

void diameter is 3mm. In (c), J indicates the genesis of the jet.

approximately 11 ps after the precursor enters the gel. The velocity profile increases
monotonically to the projectile velocity. These data are compared to establish that
the wavefront is reasonably planar over approximately 25 mm, with similar velocity
profiles at each cross-section examined. The evolution of the stress wave as it
propagates through the experimental field of view is shown in figure 7(b). Data
have been translated so that the striker interface is always located along the y axis.
The first two profiles show the stress wave entering the sample; the final two profiles
show the fully developed velocity field increasing approximately linearly up to the
striker velocity of 27 ms~!. These PIV images obtained at different times during the
wave propagation through the sample show that no wave attenuation was evident in
the absence of voids. No loading wave or velocity field non-uniformity because of
non-ideal material properties was observed in these or other PIV images.

4. Collapse of a single void

We first examine the baseline case of a single void using high-speed images to
obtain time-resolved visualization of the collapse. These images also subsequently
serve as a time reference in the analysis of the single-shot PIV images. Figure 8 shows
the collapse of a cylindrical void exposed to a stress wave. We calculate the ratio of
post-wave pressure to the initial pressure p/p, to be 421, which is intermediate to the
weak (p/p, <300) and strong (p/p, > 5000) regimes defined for the shock-induced
collapse (Ding & Gracewski 1996). Loading conditions between these two cases were
not studied, and to the authors’ knowledge, the boundary between the two regimes has
not been established. Qualitatively, we observe that the void undergoes an asymmetric
collapse as in the strong shock regime, with a high-speed jet evident in the images.
The times shown are the elapsed times referenced from figure 8(a). The asymmetric
collapse is due to the initial arrival of the loading wave on the proximal void interface
while the distal interface is unaffected and remains stationary.

The arrival of the precursor pulse at the upstream interface of the void is seen in
figure 8(b). Significant wavefront curvature can be observed; however, this is assumed
to have negligible effect, as the precursor pulse does not trigger the void collapse.
Instead, as will be seen in the PIV data, the void begins to collapse with the arrival
of the stress wave. The genesis of the jet is visible in figure 8(c), becoming fully
developed in figure 8(d). Figure 8(e) shows the consequence of the jet impingement
on the distal interface of the void. A forward-facing, semi-circular pulse propagates
into the downstream material. The time to minimum diameter (i.e. collapse time based
upon the jet reaching the downstream interface) p ,;, is found to be 24 + 1.5 ps. Note
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FIGURE 9. Normalized (a) centreline diameter and (b) internal volume vs. time
for a single void collapse.

that this is not the same as the time to reach minimum volume ¢y ,,;, for the cases
where a jet appears in the collapse. For the single void, ty ;, is 25.54+ 1.5 ps.

The normalized cavity centreline cross-sectional diameter versus time and the
normalized cavity internal volume versus time based on cavity interface location are
reported in figures 9(a) and 9(b), respectively. The centreline diameter versus time
plot shows an initial period of acceleration up to t/fp mn =0.25. The downstream
interface is stationary while the upstream accelerates. The subsequent region appears
linear until the jet reaches the distal interface. The cavity volume versus time exhibits
similar behaviour at the beginning of the collapse. Again, acceleration is observed in
the beginning stages; however, this portion extends only up to #/#y um =~ 0.12. Towards
the end of the collapse, starting at ¢/ty ,;, ~0.82, a deceleration of the volume versus
time is observed, potentially because of the increased gas compression within the void.
Diameter and volume histories are compared and contrasted with literature results in
§7.

Single-shot, two-colour, single-frame PIV measurements are made at selected times
after projectile impact. Figure 10 shows the planar velocity field at three stages during
the single void collapse process. The grey boundary represents the perimeter of the
void during the first PIV frame, and the red boundary represents the perimeter of the
void during the second PIV frame. The black dotted boundary represents the initial
size and location of the void, and the white fill region represents the uncollapsed
area of the void after the second frame. During the early stages of the collapse,
there is a region upstream of the void where the velocity is significantly greater
than that in the free stream (figure 10a). The velocity approaches more than three
times the post-wave particle velocity. The stress wavefront diffracts around the void,
and corresponding velocity vector field divergence above and below the void, with a
shielded region of zero velocity just downstream of the void, is observed in the PIV
images (figures 10a and 10b). In the final image obtained during the cavity collapse
(figure 10c), the consequence of the wave generated by the jet impingement on the
distal void interface observed in high-speed image data is presented. Radial velocity
vectors appear in the previously shielded downstream region of the void, with a
profile similar to that of the wave seen in figure 8(e). The wave appears to advance
ahead of the initial stress wave propagating through the gel.
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FiGURE 10. Velocity contours for a single void collapse. Times are referenced from the same
scale as in figure 8. Initial void diameter is 3 mm.
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FiGure 11. Examples of the velocity field induced by a collapsing void at selected times during
the collapse. Times are referenced as in figure 8. Initial void diameter is 3 mm. Velocity contours
in the range +15ms~! only are shown to emphasize the shape and extent of the region of
influence.

4.1. Single void region of influence

Dear & Field (1988) report that cavities having centres up to 2 diameters apart
experience some degree of interaction. We use PIV data to provide a quantitative
measure of the velocity induced by a single void collapse, examining the vertical
velocity component. These plots reveal two circular regions above and below the
void. Data obtained at different time delays after the beginning collapse are shown in
figure 11. During the initial stages of collapse, the surrounding material is accelerated
towards the cavity at velocities of up to 40 ms~!, approximately 1.5 times the projectile
velocity. After the upstream interface has impacted the downstream interface, radial
velocity vectors are observed downstream of the void.

The region of influence is defined as being the locus of points where the induced
vertical component of the velocity is greater than 5% of the free-stream velocity.
Measurements indicate that the void will influence material roughly 1.8-1.9 diameters
away from the centre of the void. The consequence of this is that the velocity fields
surrounding two voids will interact when their centres are at double this distance
apart (3.6-3.8 void diameters).
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FIGURE 12. High-speed images of a two void longitudinal array.

The evolution of the vertical velocity component as the collapse time increases is
shown in figures 11(a) and 11(b). After jet impingement on the distal side of the void
(figure 11c), the velocity fields above and below reverse direction as the fluid is now
moving away from the void, in agreement with the radial velocity vectors observed in
figure 10(c). The region of influence normalized by the void size measured from each
image is 16.6, 85.0 and 42.6 for the three images in figure 11, respectively.

5. Collapse of a two void longitudinal array

Selected images from high-speed movies of the collapse of a longitudinal array
of voids spaced 1 diameter apart are presented in figure 12. The time below each
frame represents the time elapsed after figure 12(a). The arrival of the precursor wave
occurs in figure 12(b). In figure 12(c), the wave has interacted with the upstream
void. The semi-circular reflected wave can be seen in this frame on the upstream side
of the upstream void. Additionally, there is evidence of a wave transmitted through
the void in this frame. In figure 12(d), the high-speed jet in the upstream void is
visible. The stress wave has now passed through the entire field of view, and the
downstream void has not been affected; thus, the downstream void is ‘shielded’ by the
upstream void. The collapse of the first void and subsequent pressure pulse is seen
in figure 12(e). Figure 12(f) shows the beginning of the collapse of the downstream
void, as well as some re-expansion of the upstream void. The remainder of the
downstream voids collapse is captured in figures 12(g) and 12(h). A distinct jet is not
observed to form in the downstream void; however, the collapse is still asymmetrical.
The time to minimum diameter 7p ,;, of the upstream void is 21 4+1.5ps, and the
time to minimum volume ty ,,;, is 22.5 4+ 1.5 pus. These quantities are indistinguishable,
tp.min =ty min = 39 £ 1.5 ps, for the downstream void.

Next, we examine the normalized plots of diameter versus time in figure 13(a) and
volume versus time in figure 13(b) for the case of the longitudinal array. Diameter
versus time data normalized by individual collapse times, as well as all data normalized
by the collapse time of the upstream void, ¢/#p inus, are shown. The upstream void
again exhibits an acceleration in the collapse profile for times up to t/tp i = 0.28.
This is followed by a period of linear collapse until the jet reaches the distal interface.
The downstream void exhibits nearly similar behaviour when normalized by its own
collapse time; however, acceleration is observed only until 7/7p ,, =0.12. Note that
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FiGURE 13. Normalized (a) diameter and (b) volume vs. time for a two void longitudinal array.
Downstream void collapse data are normalized by the downstream void collapse time (solid
symbols) and the upstream void collapse time (open symbols).

the collapse time of the downstream void is increased by a factor of 1.85 over the
upstream void collapse time, indicating that the downstream void not only delays the
collapse of the upstream void but also attenuates the strength of the loading stress
wave.

The normalized volume versus time data exhibit very similar behaviour to the single
void case, when each void collapse time is normalized by its respective fy ;. There is a
period of acceleration at the beginning until ¢/#y ,,;, = 0.08. The collapse then appears
linear until 7/ty ,,;, ~0.80, when a deceleration is observed. Additionally, figure 13(b)
presents the downstream void normalized by the time to minimum volume of the
upstream void, 7/ty ;. These data again demonstrate the increase in collapse time
for the downstream void.

The planar velocity field data for the two void longitudinal array at four selected
times are shown in figure 14. The first void interaction exhibits behaviour similar
to the isolated void case, with loading wave diffraction similar to that observed in
figure 10(a). Now, the second void is shielded from collapse in figure 14(b). It is
apparent from the velocity contours that outside the shielded region, the stress wave
has propagated beyond the second void location (figure 14b). When the upstream void
internal jet impacts the distal interface, a pressure pulse is generated and propagates
towards the downstream void. The collapse of the second void is triggered as seen in
figure 14(c). By observing the velocity contours, we see that the local velocities in the
inter-void region are higher than those in free-stream values. There will be a reflected
expansion wave (which induces a velocity toward the void) when the upstream void
pressure pulse interacts with the downstream void gel-gas interface. No internal jet
is observed in the high-speed images; however, the void does collapse asymmetrically
and radial velocity vectors are observed (figure 14d).

From the velocity contour plots in figure 14, data are extracted along selected
cross-sections and plotted versus x location in figure 15. Data are obtained at three
cross-sections: one diameter above the void centreline, the void centreline and one
diameter below the void centreline. Stress wave propagation into the downstream
medium, as well as the evolution of the void interfaces, is observed in figure 15. The
increase in velocity directly behind the void is seen in figure 15(a—c). Figure 15(d)
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FIGURE 14. Velocity contours for a two void longitudinal array. Times are referenced from
the same scale as in figure 12.

shows the post-collapse velocity profiles, where the velocity everywhere approaches
the projectile velocity.

6. Collapse of a four void staggered array

The final configuration considered is a four staggered array. All voids are of 3 mm
diameter. The voids are spaced such that the edges of any two adjacent voids are at
one void diameter apart. The distance between the farthest upstream (west) voids and
the farthest downstream (east) void is 1.83 diameters; thus, the centreline inter-void
distance is greater than in the two void longitudinal configuration. Several frames
of the collapse process for the staggered array are presented in figure 16. Times are
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FIGURE 15. Velocity profiles for a two void longitudinal array. Times are referenced from the
same scale as in figure 12. Data are obtained at three cross sections: above the centreline (#),
on the centreline (A) and below the centreline (H).

referenced from figure 16(a). Figure 16(b) shows the precursor wave interacting with
the west void. In figure 16(c), this wave has passed through the west void, generating
a reflected wave; however, the west void has not begun to collapse. The beginnings
of the jet in the west void can be seen in figure 16(d), becoming fully developed in
figure 16(e). The collapse of the north and the south voids has begun in figure 16(e),
illustrating that although the north and south voids are not directly shielded by the
west void, the stress wave diffraction upon interaction with the west void results in a
modified loading condition on the south and north voids. In the final stages of the
collapse of the north and south voids, the interfaces undergo significant deformation
(figure 16g,h). There is evidence of a jet formed in both the north and south voids.
The east void has begun to collapse in figure 16(h), with the final stages captured in
figure 16(i—/). No jetting is observed in the east void; however, the collapse is still
asymmetrical. Collapse times #p ,;, and ty ,;, for the staggered array are presented in
table 1. The volume collapse times for all shielded voids are approximately increased
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Void West  South North East
tD,min (HS) 26 66 66 66
1v,min (Bs) 30 66 66 68

TABLE 1. Time to minimum diameter, ¢p min, and time to minimum volume, fy s, for each of
the four voids. All times are +2 ps.

(i) 88 s () 112 ps (k) 130 pis () 138 s

FiGure 16. High-speed images of the collapse of a four void staggered array. Initial void
diameter is 3 mm. Interframe time is 2 ps; selected frames are shown.

by a factor of 2 over the upstream (west) void collapse time, the diameter collapse
times are increased by a factor of 2.5.

Note that the east void exhibits some volumetric expansion before the collapse
begins, illustrated by a dimensional diameter versus time plot in figure 17. Time
scale estimates show that this initial expansion may be attributed to the arrival of
a reflected wave propagating from the end of the gel sample upon the incidence
of the precursor pulse. Since the precursor velocity is substantially greater than the
particle velocity, it was not possible to delay the reflected wave arrival until after
the experimental time of interest in the four void case. The normalized distance and
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FiGURe 17. Dimensional plot of diameter vs. time for a four void staggered array.

volume histories for the east void show no subsequent effect because of the initial
expansion.

The normalized plots of diameter versus time are shown in figures 18(a) and 18(b)
and volume versus time are shown in figures 18(c) and 18(d). Data for each void are
shown normalized by both the individual collapse time and the collapse time of the
west void as a baseline case. In the plot of diameter versus time, when normalized
by their respective collapse times, acceleration is observed at the beginning of the
collapse process. However, for the three downstream voids, the region of acceleration
appears to extend further in time than the upstream (west) void. The west void
collapse becomes linear at ¢/zp ,;, = 0.23, while the downstream voids become linear
at t/tp min =0.45. When all voids are normalized by the west void collapse time scale
(figure 18b), collapse times are increased by a factor of about 2.5 with all three voids
exhibiting a similar dynamic behaviour.

The normalized plots of volume versus time for the staggered array conform to
the behaviour observed in the longitudinal array; there is a period of acceleration,
followed by a period of linear collapse, and finally a period of deceleration. For the
west void, the acceleration period extends to /¢ty i, =0.13, followed by a period of
linear collapse until 7/ty i, =0.86. The north and south voids undergo acceleration
until #/ty i, =0.41 and linear collapse until /¢y ,;, ~0.82. The east void data show
acceleration until /1y, = 0.36, followed by the linear collapse until 7/zy ., = 0.84.
Thus, the normalized duration of initial acceleration increases by a factor of 3 for
both the vertically offset voids because of the loading wave diffraction about the
west void. The threefold increase in the duration of the region of acceleration is also
observed for the directly shielded (east) void. In all cases, the linear collapse period
was maintained until the void reached 80-85 % of the final volume, regardless of the
duration of the initial acceleration or the location of the void.

PIV data at five selected times are shown in figure 19. Figure 19(a) is reminiscent
of the single void case in which the material downstream of the west void is shielded;
however, there is already wave interaction with the north and south voids with
noticeable wave diffraction around the west void as well as around the north and
south voids. The final stages of the west void collapse, together with substantial north
and south void collapse, are evident in figure 19(b). The inter-void shielded region
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FiGURe 18. Normalized diameter (a,b) and volume (c,d) volume vs. time for a four void
staggered array. (a,c) The data normalized by the individual collapse time; (b,d) the data
normalized by the west void collapse time.

has become smaller. The west void collapse and the subsequent wave velocity field in
the interior of the array are shown in figure 19(c). The vectors indicate an interaction
of the west void with the north and south voids with velocity vectors diverging from
the centreline towards the two outer voids. This same effect is seen in figure 19(d). In
this case, the north and south void collapse results in flow towards the east void. The
post-collapse velocity field around the east void is shown in figure 19(e). The void
has collapsed asymmetrically, and a radially expanding velocity field downstream of
the collapsed void is again observed.

As in the case of the four void array, several velocity profiles are extracted along
selected cross-sections plotted versus x location in figure 20. Indicators of void
interface location have not been included in these plots for clarity, but can be
referenced from figure 19. As the collapse process is very nearly symmetric about the
array centreline, four cross-sections are selected: the east void centreline, the south
void centreline, the midline between the previous two, and one diameter below the
south void centreline.

Figures 20(a) and 20(b) show the west void collapse and the start of the south
void collapse. The velocity profile (along the west void centreline) resulting from the
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FIGURE 19. Velocity profiles for a four void staggered array. Times are referenced from the
same scale as in figure 16.

impact of the west void internal jet has a similar shape to the velocity profile along
the midline (figure 20c). There is a large velocity increase from nearly zero to 75ms™!
on the upstream interface of the east void (figure 20d). Lastly, figure 20(e) shows the
post-collapse velocity field; again, a radially expanding velocity field downstream of
the east void is observed.



(@ 100

—1

Velocity (ms™)

I
S

(©) 100

e}
(=

Velocity (m s™!)
S
(=)

D
(=3

N}
S

N
S

Collapse of void arrays under stress wave loading 419

Velocity (m s™!)

(®) 100 7

80 |
60|
40 F

20|

(@ 100
80 f
60
40

20F

X (mm)
140 ps

FIGUre 20. Velocity cross-sections for four void staggered array. Times referenced are the
same as in figure 12. Data are at four selected cross-sections: west void centreline (O), array
midline (#), south void centreline (A) and 1 diameter below the south void centreline (H).

6.1. Interaction in a four void staggered array

To quantify the interactions of the four staggered array, we again utilize the vertical
component of the velocity and observe deviations from the case of the single void
profiles. These data are shown for varying times in figure 21.
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FiGure 21. Examples of the velocity field induced by a collapsing four void staggered array,
at selected times during the collapse. Times are referenced as in figure 16. Initial void diameter
is 3 mm. Velocity contours in the range +15ms™" only are shown to emphasize the shape and
extent of the region of influence.

Figure 21(a) shows the velocity field around the west void, which is qualitatively
similar in size and shape to single void profiles presented in figure 11(a). The north and
south voids also have an induced field; however, it is asymmetrical, which is expected
from the high-speed images and PIV data above. These two velocity fields exhibit
distinct interaction as predicted in §4.1, as the voids are spaced 2 diameters centre to
centre. This plot indicates that each void simultaneously influences the velocity field
of the other void; therefore, downstream voids in this loading condition may, in fact,
influence the upstream voids. Figure 21(b) shows a decrease of the region around the
west void, which agrees with figure 11. The north and south voids have now developed
profiles on inside lower and upper sides, respectively; however, the profiles are still
highly asymmetrical. Figure 21(c) shows the velocity fields around the north and
south voids after the collapse of the west void. Again, there is a distinct interaction
between resultant velocity field from west void collapse with the north and south
voids, which appears to be a stronger interaction than the one seen in figure 21(a).
The velocity fields surrounding the north and south voids exhibit different profiles
than the single void. The upper and lower lobes of velocity surrounding each void
display asymmetries in shape and location in comparison to the single void profiles.

7. Comparison of stress wave and shock-wave loading

In this study, we examine the interaction of a stress wave, such as might result from
an accidental mechanical insult, with void arrays. In contrast to a shock wave, the
stress wave profile has a length scale that is comparable to both the void diameter
and the inter-void spacing. We compare the internal volume history obtained in the
present experiments under stress wave loading with literature data for shock-induced
cavity collapse (figure 22). Bourne & Field (1992) experimentally investigated shock-
induced collapse of cylindrical, air-filled voids in gelatine, with cavity diameters from
3 to 12mm and a shock pressure ratio of 0.26 GPa. The experimental data from
Haas & Sturtevant (1987), who examined the shock collapse of cylindrical helium
and Refrigerant 22 gas bubbles in air, are also shown. Bourne and Field found a
linear curve fit to their data over the entire collapse regime. These data, however,
show that linear behaviour occurs only over a portion of the collapse, with regions
of acceleration and deceleration at the beginning and end of the collapse history.
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FIGURE 23. Plots of normalized volume vs. normalized time for current experimental data
and literature simulations from Ball et al. (2000) (two-dimensional) and Johnsen & Colonius
(2009) (three-dimensional). Collapse times are normalized by ty ;. Good agreement is obtained
between experiments and two-dimensional numerical collapse histories.

The present experimental data are also compared with numerical collapse histories
(figure 23). Ball et al. (2000) carried out simulations of the Bourne & Field (1992)
shock-induced collapse experiments and reported the initial and final acceleration and
deceleration regions. These numerical data show very good agreement with the present
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experiments over the entire collapse history, with the initial and final stages captured
in both the experiments and simulations. Ball et al. (2000) report a linear collapse
region between 0.27 < t/ty .i» < 0.81, which agrees well with the current results (§4).
The two-dimensional data are in good agreement despite the difference in the loading
wave, indicating that the pressure ratio is still the dominant parameter in determining
the collapse dynamics at these conditions.

Also shown for reference are data from simulations by Johnsen & Colonius (2009)
of the shock-induced collapse of a spherical air bubble in water. Initial acceleration
and final deceleration are also observed in these simulations. As expected, the initial
volume reduction is slower and the final volume reduction is faster in the spherical
case than in the cylindrical case.

In summary, the present internal volume history is in good agreement with the
two-dimensional simulations of Ball et al. (2000), despite stress versus shock-wave
loading. At the current conditions, the loading wave profile has no evident effect on the
collapse history of an isolated cavity. Collapsing cylindrical cavities undergo initial
acceleration and final deceleration, a qualitatively similar behaviour to collapsing
spherical voids.

Next, we examine cavity collapse times across a range of pressure ratios. The
Rayleigh collapse time . of symmetrical, spherical bubble scales with the square root
of the pressure difference (Rayleigh 1917; Brennan 2005)

0.5
f ~0.915 <p> R, (7.1)
Po — Pv

where p is the density in the surrounding medium, p. is the pressure at infinity,
py 18 the internal pressure and R; is the initial bubble radius. A correction for
asymmetric collapse (near a wall) introduced the distance to the wall as a parameter
but retained the same pressure and initial bubble radius dependence (Rattray 1951).
Johnsen & Colonius (2009) compare the time to minimum volume for Rayleigh and
shock-induced collapse of spherical bubbles over a range of pressure ratios up to 714.
Shock-induced collapse times are approximately one time unit greater than Rayleigh
collapse, an effect attributed to the shock propagation time across the bubble. Of
relevance to the current study, Johnsen & Colonius (2009) find the same collapse time
scaling with pressure ratio for both shock-induced and Rayleigh collapse, despite
asymmetric collapse and internal jet formation under shock loading.

For cylindrical bubbles, no analogue to the Rayleigh equation exists. Small and
large amplitude oscillations can be modelled using a wave equation (Epstein & Keller
1972), but to the authors’ knowledge, no collapse time prediction model is available.
We compare the time to minimum volume #y,; from the present study with a
compilation of cylindrical bubble collapse times from the literature as a function
of the pressure ratio p/p, across the loading wave (figure 24). Note that fy ,;, is
normalized by the initial bubble radius R; and the fluid sound speed c.

To achieve a range of loading wave pressure ratios, high-speed movie collapse
time measurements were made with projectile velocities of 16, 27 and 78ms~!,
corresponding to calculated pressure ratios of 249, 421 and 1140. A power-law curve
fit to the current data is shown. Perhaps surprisingly, the exponent is close to the
—0.5 dependence of the Rayleigh curve. Data from the two-dimensional simulations
of Ding & Gracewski (1996), Ball et al. (2000), Hu & Khoo (2004) and Sushchikh &
Nourgaliev (2005) for shock loading conditions are shown. Ding & Gracewski (1996)
identify a time of maximum pressure for symmetric collapse and a time of jet
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FIGURE 24. Normalized collapse time vs. loading wave pressure ratio for single, cylindrical
voids. A power-law curve fit, ty i,c/R; = 710(p/p,)~", is shown to the current data (#) and
Dear & Field (1988) (<>).

impingement for asymmetric collapse. Ball et al. (2000), Hu & Khoo (2004) and
Sushchikh & Nourgaliev (2005) report a time to minimum volume. Although the
internal volume histories are very similar to current results (figure 23), the collapse
times are significantly different. Experiments show increased collapse times over the
numerical results. Data from the two-dimensional simulations of Ding & Gracewski
(1996) also have pressure dependence close to the Rayleigh curve for three-dimensional
gas bubbles in water.

The experimental data of Dear & Field (1988), Bourne & Field (1991) and Bourne &
Field (1992) for cylindrical voids under shock loading are also presented. In spite of
the similarity in the experimental set-up, there is not good agreement between these
data and the present study in all cases. The data from Dear & Field (1988) appear
consistent with our data and are included in the curve fit. However, collapse times
from the related studies of Bourne and Field are significantly different. Simulations
by Ball et al. (2000), Hu & Khoo (2004) and Sushchikh & Nourgaliev (2005) were
carried out at two selected conditions from Bourne & Field (1992) experiments as a
code validation exercise. The simulations of Ball et al. (2000) and Hu & Khoo (2004)
agree, but differ by a factor of 2 from the experimental value (indicated by an asterisk
in figure 24). In fact, the 6 mm void diameter numerical collapse times correspond
to the 12mm void diameter experiment. The 12mm void diameter simulations of
Sushchikh & Nourgaliev (2005) correspond to the 6 mm void diameter experiment. A
shorter collapse time is obtained numerically for the 12 mm diameter void than that
for the 6 mm diameter void at the same pressure ratio.

From spherical bubble collapse simulations, Johnsen & Colonius (2009) report
shock-induced collapse time dependence on pressure ratio is close to the Rayleigh
collapse. A similar conclusion is reached in this work for cylindrical cavities. Under
stress wave loading, experimental collapse times scale with pressure ratio with an
exponent that is in good agreement with Rayleigh collapse. Under shock-wave loading,
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FIGURE 25. Normalized collapse time, ty yinc/R;, vs. pressure ratio for different
void locations.

simulations by Ding & Gracewski (1996) also follow Rayleigh scaling. This is perhaps
reasonable given that a comparison of present collapse history data with numerical
simulations shows that at the conditions of this study, the dynamic behaviour of
collapse under stress wave loading and shock-wave loading is similar. Thus, Rayleigh
collapse appears to provide a reasonable model for the scaling of collapse time with
pressure ratio for both cylindrical and spherical cavities under shock and stress wave
loading.

Wave diffraction around the void arrays significantly affects the loading condition
and the collapse times of the individual voids. Collapse times for voids in longitudinal
and staggered arrays are increased over the single void case. To illustrate this effect,
collapse times for shielded and offset voids are compared with isolated void collapse
times (figure 25). If a void is located directly downstream of another void, an 85 %
increase in collapse time is observed. Voids that are vertically offset are also affected,
with collapse time increasing by a factor of 2. Results suggest that a modified pressure
ratio should be used in predicting the collapse times for interacting arrays.

8. Conclusions

We investigate the dynamic interactions of multiple collapsing cavities under stress
wave loading, such as occurs for example in energetic materials in accident scenarios
with low impact velocity mechanical insult. Hotspot formation and detonation
initiation involves complex thermochemical, fluid and structural processes over an
extremely broad range of scales. We experimentally study a model problem with
arrays of cylindrical voids in a gelatinous material. These results, therefore, also have
relevance to void collapse in hydraulic and biomedical applications. A single void and
two configurations of void arrays are examined: a two void longitudinal array and a
four void staggered array. High-speed movies provide time-resolved visualization of
the collapse process, in tandem with PIV measurements in the surrounding media at
selected stages during the collapse.
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In the baseline case of a single void, we observe asymmetric collapse and the
formation of a central internal jet. The high-speed jet impinges upon the stationary
distal void interface and generates a pressure pulse followed by a radially expanding
velocity field. Neighbouring voids have been observed to interact when located
approximately 1 diameter apart in previous studies. We quantify a void collapse
region of influence by measuring the extent of the vertical velocity field as a function
of time.

In a two void longitudinal array, both collapse-shielding and collapse-triggering
occur. The upstream void is observed to collapse in the same manner as the single void.
However, the stress wave diffracts around the upstream void, and the downstream
void collapse is delayed by this shielding effect. The downstream void collapse is
subsequently triggered by the pressure pulse generated by the upstream void central
jet impingement. The downstream void exhibits no distinct jetting, but does collapse
asymmetrically.

In the case of the four void staggered array, the upstream void collapses again in
a similar manner to the single void case. The second column of voids tends to angle
slightly inward towards the fourth void. The collapse of the upstream void triggers a
pressure pulse followed by a velocity field that are very similar to those produced by
the other configurations, implying a similarity in the characteristics of the collapse
regardless of the level of shielding. The collapse of the last void appears to be more
strongly dependent on the middle column of voids, rather than on the upstream void.
Normalized diameter versus time plots show similar collapse dynamics for the offset
voids and the downstream void.

Internal volume and centreline diameter histories during the collapse are reported.
In contrast to the entirely linear behaviour reported in previous experiments, the
present internal volume versus time data show an initial acceleration of the upstream
interface, followed by linear collapse and a final deceleration. Very good agreement is
obtained with two-dimensional numerical simulations, which also capture the regions
of acceleration and deceleration in the collapse history. These profiles are qualitatively
similar to curves obtained from three-dimensional simulations. Centreline diameter
data show an initial acceleration followed by a linear regime, but no final deceleration
due to the formation of the central jet. The experimental volume history data for the
single void under stress wave loading are in good agreement with existing numerical
simulations of a void under shock-wave loading, indicating that at the conditions of
the study, the pressure ratio is the dominant parameter in determining the collapse
dynamics.

For a spherical bubble, the Rayleigh collapse time scales with the square root of
the pressure difference. The collapse time for spherical bubbles under shock loading
has been previously shown to have pressure ratio dependence similar to Rayleigh
collapse. No direct analogue for the Rayleigh—Plesset equation exists for cylindrical
bubbles. We compare time to minimum volume results from the present study with
existing numerical and experimental data. Normalized collapse time is generally
found to increase with decreasing pressure ratio. A power law can be fit to the
experimental data from the present study and Dear & Field (1988), and an exponent
of —0.55 is obtained. Experimental data from the related studies of Bourne & Field
(1992) do not fall on this curve. Simulations universally underpredict experimental
collapse times but appear to show a similar pressure dependence as experiments.
These results indicate that, as for spherical bubbles, the collapse times of dynamically
loaded cylindrical cavities have pressure ratio dependence close to Rayleigh collapse.
In summary, Rayleigh collapse appears to be a reasonable model for the scaling of
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collapse time with pressure ratio for both cylindrical and spherical cavities under
shock and stress wave loading for the conditions of this study.

In addition to inter-void collapse-shielding and collapse-triggering interactions,
the presence of multiple voids affects the local loading condition. Wave diffraction
is observed and found to have a significant effect on the collapse time. This has
implications for detonation initiation, when ignition spread occurs under critical
conditions of voids collapsing in concert. In a longitudinal array, the downstream void
collapse time is increased 85 % over the upstream void collapse time. In a staggered
array, the diameter collapse time increases by a factor of 2.5 and the volume collapse
time increases by a factor of 2. Results suggest that a modified loading wave pressure
ratio should be used in predicting the collapse times for interacting void arrays.
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